Friday, December 6, 2013

Redesigning Education: Building Schools for Science, Technology, Engineering, and Math

Not since the Soviets launched Sputnik into Earth's orbit in the 1960s has there been such urgency for America to redesign science and math education programs. Now, in the third millennium, the initiative takes the form of STEM (Science, Technology, Engineering, and Mathematics) education. Research demonstrates that interest among American students in STEM subjects has greatly declined, a major issue given that the STEM labor force is an indicator of a nation's ability to sustain itself. The new STEM initiative will launch with a bold mission: to reengage students in the joys of learning science and mathematics at all levels of education.

The launch is well underway. In January of this year President Obama announced that $250 million would be invested in training and recruiting 100,000 new science and math teachers. Secretary of Education Arne Duncan made STEM a prerequisite for states applying for Race to the Top funding.In lockstep with the White House announcement, the Bill & Melinda Gates Foundation in conjunction with the American Architectural Foundation, conducted workshops as part of a national summit on how design thinking and the design process can help to foster creative new models for STEM school development and create a framework for scaling up the STEM knowledge network. Using design thinking, workshop participants also investigated what a STEM educational environment would look like. America is investing in STEM education with money and with human capital.

Now is the time to reflect on the reasons for students' disengagement from science and technology subjects. We need to treat STEM as a pedagogical approach and design an environment to support this new way of teaching. Brian Greene, a best-selling author and theoretical physicist best known for his work in string theory, talks passionately about how we have educated the curiosity out of the math and sciences. Greene says that we have paralyzed our children with the fear of being wrong. Risk-taking and making mistakes are critical to the scientific process. This fear of being wrong has resulted in disengagement from science and mathematics: learning science and math is a drag! He makes a convincing assessment of the problems with our current science education system and stops just short of demanding a new pedagogy to bring excitement and relevance back to the learning of science and math.

No comments:

Post a Comment